
4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 1/14

Flow Control - Part 1
In this lesson, we will look at how to add intelligence to our scripts. So far, our
project script has only consisted of a sequence of commands that starts at the first
line and continues line by line until it reaches the end. Most programs do much more
than this. They make decisions and perform different actions depending on
conditions.

The shell provides several commands that we can use to control the flow of
execution in our program. In this lesson, we will look at the following:

if
test
exit

if
The first command we will look at is if. The if command is fairly simple on the
surface; it makes a decision based on the exit status of a command. The if
command's syntax looks like this:

Validation failed. Please retry or wait till
W3C allows validation again

X

http://linuxcommand.org/lc3_man_pages/ifh.html
http://linuxcommand.org/lc3_man_pages/testh.html
http://linuxcommand.org/lc3_man_pages/exith.html

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 2/14

The if statement has the following syntax:

if commands; then
commands
[elif commands; then
commands...]
[else
commands]
fi

where commands is a list of commands. This is a little confusing at first glance. But
before we can clear this up, we have to look at how the shell evaluates the success
or failure of a command.

Exit Status
Commands (including the scripts and shell functions we write) issue a value to the
system when they terminate, called an exit status. This value, which is an integer in
the range of 0 to 255, indicates the success or failure of the command’s execution.
By convention, a value of zero indicates success and any other value indicates
failure. The shell provides a parameter that we can use to examine the exit status.
Here we see it in action:

[me@linuxbox ~]$ ls -d /usr/bin
/usr/bin
[me@linuxbox ~]$ echo $?
0

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 3/14

0
[me@linuxbox ~]$ ls -d /bin/usr
ls: cannot access /bin/usr: No such file or directory
[me@linuxbox ~]$ echo $?
2

In this example, we execute the ls command twice. The first time, the command
executes successfully. If we display the value of the parameter $?, we see that it is
zero. We execute the ls command a second time, producing an error and examine
the parameter $? again. This time it contains a 2, indicating that the command
encountered an error. Some commands use different exit status values to provide
diagnostics for errors, while many commands simply exit with a value of one when
they fail. Man pages often include a section entitled “Exit Status,” describing what
codes are used. However, a zero always indicates success.

The shell provides two extremely simple builtin commands that do nothing except
terminate with either a zero or one exit status. The true command always executes
successfully and the false command always executes unsuccessfully:

[me@linuxbox~]$ true
[me@linuxbox~]$ echo $?
0
[me@linuxbox~]$ false
[me@linuxbox~]$ echo $?
1

We can use these commands to see how the if statement works. What the if

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 4/14

We can use these commands to see how the if statement works. What the if
statement really does is evaluate the success or failure of commands:

[me@linuxbox ~]$ if true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command following if
executes successfully, and is not executed when the command following if does
not execute successfully.

test
The test command is used most often with the if command to perform true/false
decisions. The command is unusual in that it has two different syntactic forms:

First form

test expression

Second form

[expression]

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 5/14

The test command works simply. If the given expression is true, test exits with a
status of zero; otherwise it exits with a status of 1.

The neat feature of test is the variety of expressions you can create. Here is an
example:

if [-f .bash_profile]; then
 echo "You have a .bash_profile. Things are fine."
else
 echo "Yikes! You have no .bash_profile!"
fi

In this example, we use the expression " -f .bash_profile ". This expression
asks, "Is .bash_profile a file?" If the expression is true, then test exits with a zero
(indicating true) and the if command executes the command(s) following the word
then. If the expression is false, then test exits with a status of one and the if
command executes the command(s) following the word else.

Here is a partial list of the conditions that test can evaluate. Since test is a shell
builtin, use "help test" to see a complete list.

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 6/14

builtin, use "help test" to see a complete list.

Expression Description

-d file True if file is a directory.

-e file True if file exists.

-f file True if file exists and is a regular file.

-L file True if file is a symbolic link.

-r file True if file is a file readable by you.

-w file True if file is a file writable by you.

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 7/14

-x file True if file is a file executable by you.

file1 -nt file2 True if file1 is newer than (according to modification time) file2

file1 -ot file2 True if file1 is older than file2

-z string True if string is empty.

-n string True if string is not empty.

string1 = string2 True if string1 equals string2.

string1 != string2 True if string1 does not equal string2.

Before we go on, I want to explain the rest of the example above, since it also

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 8/14

Before we go on, I want to explain the rest of the example above, since it also
reveals more important ideas.

In the first line of the script, we see the if command followed by the test
command, followed by a semicolon, and finally the word then. I chose to use the [
expression] form of the test command since most people think it's easier to
read. Notice that the spaces required between the "[" and the beginning of the
expression are required. Likewise, the space between the end of the expression and
the trailing "]".

The semicolon is a command separator. Using it allows you to put more than one
command on a line. For example:

[me@linuxbox me]$ clear; ls

will clear the screen and execute the ls command.

I use the semicolon as I did to allow me to put the word then on the same line as
the if command, because I think it is easier to read that way.

On the second line, there is our old friend echo. The only thing of note on this line is
the indentation. Again for the benefit of readability, it is traditional to indent all blocks
of conditional code; that is, any code that will only be executed if certain conditions
are met. The shell does not require this; it is done to make the code easier to read.

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 9/14

In other words, we could write the following and get the same results:

Alternate form

if [-f .bash_profile]
then
 echo "You have a .bash_profile. Things are fine."
else
 echo "Yikes! You have no .bash_profile!"
fi

Another alternate form

if [-f .bash_profile]
then echo "You have a .bash_profile. Things are fine."
else echo "Yikes! You have no .bash_profile!"
fi

exit
In order to be good script writers, we must set the exit status when our scripts finish.
To do this, use the exit command. The exit command causes the script to
terminate immediately and set the exit status to whatever value is given as an

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 10/14

terminate immediately and set the exit status to whatever value is given as an
argument. For example:

exit 0

exits your script and sets the exit status to 0 (success), whereas

exit 1

exits your script and sets the exit status to 1 (failure).

Testing For Root
When we last left our script, we required that it be run with superuser privileges. This
is because the home_space function needs to examine the size of each user's
home directory, and only the superuser is allowed to do that.

But what happens if a regular user runs our script? It produces a lot of ugly error
messages. What if we could put something in the script to stop it if a regular user

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 11/14

messages. What if we could put something in the script to stop it if a regular user
attempts to run it?

The id command can tell us who the current user is. When executed with the "-u"
option, it prints the numeric user id of the current user.

[me@linuxbox me]$ id -u
501
[me@linuxbox me]$ su
Password:
[root@linuxbox me]# id -u
0

If the superuser executes id -u, the command will output "0." This fact can be the
basis of our test:

if [$(id -u) = "0"]; then
 echo "superuser"
fi

In this example, if the output of the command id -u is equal to the string "0", then

http://linuxcommand.org/lc3_man_pages/id1.html

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 12/14

In this example, if the output of the command id -u is equal to the string "0", then
print the string "superuser."

While this code will detect if the user is the superuser, it does not really solve the
problem yet. We want to stop the script if the user is not the superuser, so we will
code it like so:

if [$(id -u) != "0"]; then
 echo "You must be the superuser to run this script" >&2
 exit 1
fi

With this code, if the output of the id -u command is not equal to "0", then the
script prints a descriptive error message, exits, and sets the exit status to 1,
indicating to the operating system that the script executed unsuccessfully.

Notice the ">&2" at the end of the echo command. This is another form of I/O
direction. You will often notice this in routines that display error messages. If this
redirection were not done, the error message would go to standard output. With this
redirection, the message is sent to standard error. Since we are executing our script
and redirecting its standard output to a file, we want the error messages separated
from the normal output.

We could put this routine near the beginning of our script so it has a chance to
detect a possible error before things get under way, but in order to run this script as

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 13/14

detect a possible error before things get under way, but in order to run this script as
an ordinary user, we will use the same idea and modify the home_space function to
test for proper privileges instead, like so:

function home_space
{
 # Only the superuser can get this information

 if ["$(id -u)" = "0"]; then
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
 fi

} # end of home_space

This way, if an ordinary user runs the script, the troublesome code will be passed
over, rather than executed and the problem will be solved.

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in
any medium, provided this copyright notice is preserved.

mailto:bshotts@users.sourceforge.net

4/2/2015 Writing shell scripts - Lesson 8: Flow Control - Part 1

http://linuxcommand.org/lc3_wss0080.php 14/14

Linux® is a registered trademark of Linus Torvalds.

